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metal backed) are not significantly affected when the slab
thickness is a very small fraction of the radius of curva-
ture. However, the presence of a grounded layer of dielec-
tric on the inner side of the slab leads to a resonant
enhancement in the fractional change in the propagation
constant, In the region where magnetostatic approxima-
tion is approximately valid, the “curvature loss” is ex-
pected to be negligible.
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On the Resonant Frequency of a Reentrant
Cylindrical Cavity

MAREK JAWORSKI

Abstrace—A new efficient method determining the resonant frequency
of a reentrant cylindrical cavity is suggested. The method is based on
solving the Helmholtz equation within two cavity regions and matching the
solutions across the boundary surface. Contrary to similar formulations
published previously, the continuity conditions on the boundary are im-
posed in a rigoreus way. As a result, the solution is obtained in a form of
successive approximations converging to the exact resonant frequency
when a number of iterations tend toward infinity, Numerical examples are
given for a few reentrant cavities of typical dimensions. Comparison is also
made with experimental data as well as other theoretical results,

1. INTRODUCTION

) EENTRANT cylindrical cavities, widely used for a
v number of years, have recently found a new applica-
tion in solid-state devices, particularly Gunn and tunnel
diode oscillators. Simultaneously, a renewed interest in
approximate methods determining the resonant frequency
of such cavities has been observed. In some applications it
is sufficient to consider a simple equivalent circuit, usually
based on TEM coaxial line and lumped capacitance
[1}H3]. In general, however, more sophisticated methods

Manuscript received April 27, 1977; revised August 31, 1977.
The author is with the Institute of Physics, Polish Academy of Scien-
ces, 02-668 Warsaw, Poland.

are needed in order to evaluate the resonant frequency
with reasonable accuracy [6]-[9].

Recently, a new interesting approach has been sug-
gested by Williamson [9]. In his method, the magnetic
field in both regions of the reentrant cavity is excited by
the “aperture” electric field given on the interface r=a
(see Fig. 1). The resonant frequency is then found by
matching the magnetic fields across the interface and
solving the appropriate transcendental equation.

The above formulation, being in fact an improvement
of Hansen’s approach [6], is numerically simple and pro-
vides more accurate results than the solutions published
previously. Nevertheless, the main disadvantage of both
Williamson’s and Hansen’s method is due to the fact that
the aperture field, which is generally not known, has to be
included in the transcendental equation. In the paper of
Williamson [9], the solution of the corresponding cylindri-
cal antenna problem has been suggested as a suitable
approximation for the electric field on the interface r=a.
Unfortunately, such an approximation is sufficiently ac-
curate for narrow-gap cavities only. Moreover, the solu-
tion of the antenna problem, as formulated for an un-
bounded region, may not be adequate for resonant sys-
tems, particularly in the cases when the outer diameter of

0018-9480/78 /0400-0256$00.75 ©1978 IEEE
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Fig. 1. Cross section of the reentrant cavity.

the cavity 2b is not much larger than the inner diameter
2a. On the other hand, imposing the continuity condition
for one point only [6] or for the average value of the field
[9] is evidently insufficient, since the field has to be
continuous in each point on the boundary surface.

In order to avoid the foregoing disadvantages, we have
developed a method which is more general and simulta-
neously more rigorous than various formulations pub-
lished until now. Since no approximation of the aperture
field is required, the method outlined below is very ac-
curate and may be applied to reentrant cavities of arbi-
trary dimensions. A simple numerical procedure provides
a sequence of successive approximations approaching the
exact solution as a limit.

II.

The cross section of the cylindrical reentrant cavity is
shown in Fig. 1. It is convenient to divide the cavity into
two regular regions along the surface r=a. It may then be
assumed that the magnetic field in each region is excited
by surface magnetic currents equivalent to the electric
field incident on the boundary surface (aperture) r=a
[10]. Since we are mainly interested in axially symmetric
fundamental modes, we confine our considerations to the
solutions which are independent of the angular coordin-
ate .

In particular, for the magnetic field on the aperture, we
obtain

FORMULATION OF THE PROBLEM

a<r<b
(1a)

H}(a,z)= ik gG’(a, a,z,z')E,(a,z')dz,
ZJy

and
H)(a,z)= :—Zlk f gG”(a, a,2,2)E,(a,2')dz’, 0<r<a
0
(1b)
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where

G(r,r,z,2") two-dimensional Green function of the
Helmholtz operator in cylindrical coordi-
nate system,

E,(a,2) component of the electric field tangential
to the surface r=a,

k=2x /A free-space propagation constant,

z free-space impedance.

It can be shown that

GYa,a,z,z')=— % Gi+2 § cos(mnz /h)
m=1
-cos(mnz' /h)GL| (2a)
J1(va) Yo(vb) — Y, (va)Jo(vb)
_ | o[a(0a) Yo(ob) = Yo(va)o(ob) ] k>mm/h
I,(va)Ky(vb)+ K, (va)l,(vh) k<mn /h

of Zo(va) Ko(0b) — Ko(va) Io(vb) ]

v=\/|k2-—(m77/h)2| ,  m=0,1,2---.

J,(x) and Y,(x) denote the Bessel functions of the first
and second kind, respectively, while 7,(x) and K, (x) de-
note the modified Bessel function of the first and second
kind, respectively.

Similarly
G"(a,a,z,2')= lg Gl+2 > cos(nmz/g)
n=1
-cos(nmz’/g)G| (2b)
where
J (ua)
—, k>nmw/g
n_ uly (ua)
" I, (ua)
—, k
uly(ua)’ <nm/g

u=|k2—(nm/g)’| ,

Since the Green function is in fact the kernel of the
resolvent operator R, it is convenient to introduce a brief
operator notation

Rx(a,z)= ’—ZIE fogG (a,a,z,z")x(a,z")dz’ (3)

where x(a,z) is the arbitrary function defined for z €(0,g).
Thus one can rewrite (1(a)) and (1(b)) in a simple form

H}(a,z)=R'E,(a,z) (4a)

n=0,1,2,---.

and
H(a,z)=—R"E,(a,z). (4b)

The resonance condition follows directly from the con-
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tinuity condition for the magnetic field on the boundary
I 1I _
H,(a,z)—H,' (a,2)=0 5)
or in a more compact form

F(z)=0 (6)

where
F(z)=H)(a,z)— H}'(a,z)
=R'E,(a,z)+ R"E, (a,z). @)

Proper approach to the solution of (6) is the crucial
point of the method, since any approximation made at
this moment strongly influences the final results. The
main difficulty arises from the fact that (6), from which
the resonant frequency is to be determined, must be
satisfied for every z belonging to the interval (0,g).

Williamson [9] suggests an “averaged” continuity condi-
tion of the type

ngF(z)dz=0

which is independent of z and, contrary to previous for-
mulations [6], involves the continuity condition for each
point from (0, g). It should be stressed, however, that such
an averaged equation is not equivalent to (6), since satisfy-
ing [§F (z)dz=0 does not imply that F(z) equals zero for
every z belonging to the interval (0,g). Instead, it can
easily be shown that (6) is equivalent to an infinite set of
equations

fogF(Z)xlg(z)dz=0, j=0,1,2,- - (8)

where the functions y, form a complete orthonormal set in
the interval (0,g). Indeed, F(z) will vanish if all its Fourier
coefficients (given in fact by (8)) vanish simultaneously.

Thus substituting (7) into (8), we find that the reso-
nance condition (5) is equivalent to the infinite set

(RE,¥)+(R"E,.¢;)=0, j=0,1,2,---

where (u,v) denotes a scalar product [§u(z)v(z)dz.

It should be noted that, contrary to other methods, we
do not require any information about the electric field
distributions on the boundary surface r=a. We assume
that only E,(a,z) is at least a piecewise continuous func-
tion of z and may be expanded in a series

©)

a0

E.(a.2)= X ch(2).

i=0

(10)

On substituting (10) into (9) we obtain an infinite set of
homogeneous linear equations

«©

> o[ (RY9)+(R™,4)]=0,  j=0,1,2,---. (11)
i=0

A nonzero solution for ¢; exists only if the determinant
formed from the expressions in square brackets vanishes.
Hence, the final transcendental equation may be written
as

det[ W] =0 (12)
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where elements of the matrix [ W] are given by

wy=w,=(RN, ) +(R™,),  i,j=0,1,2,---. (13)

Since the set {1} is infinite, the exact solution of (12) with
respect to the resonant frequency could be found for an
infinite dimensional matrix only. In practice, however,
(12) may be solved approximately to any desired order by
truncating both the set of equations (9) and the series (10)
at i,j=n. Thus extending successively the matrix dimen-
sion we obtain a sequence of approximations tending to
the exact solution when n tends toward infinity.

It is interesting that the set of linear equations identical
with (11) may be derived from Weinstein’s variational
method of intermediate problems [11], [12]). General varia-
tional formulation implies that the sequence of successive
approximations is nondecreasing

FOLIO L < FIG L < f (14)

where f is the exact resonant frequency, and f™ is the
approximate solution of (12) for i,j < n. In other words,
approximate solutions f® form a monotonic sequence
converging to the exact solution from below.

Note that the number of roots of (12) is infinite. The
lowest one corresponds to the fundamental mode, whereas
the others correspond to higher TM modes of axial sym-
metry.

ITII. NuMERICAL RESULTS
Let us take into consideration the following set:
1/Vg, i=0
¥(2)= . . (15)
V2/g cos(inz/g), i=1,2,3,---

which is complete and orthonormal in the interval (0,g).
After substituting (15) into (13) we obtain diagonal ele-
ments

)
0 & ® [ sin(mmg/h) 12 . _
G! h{G°+2m=l[—_m7rg/h GL1, 0
i G4 8 i sin(mmg / h) r Gl
' h .2y mmg/h [1—-(ih/mg)2]2,

i=1,23,--- (16)
and off-diagonal elements

3/2 % T sin(mwg/h) 1?
w1j=j/ }X(—l)mﬂﬂf > [S_ ( g/_)}

e mag/h
Gy, i=0
, 17
[1=Ch/mg)?|[1=(h/mg)*]”  i=1,2,3,--- 1)

where G and G! are defined in (2a) and (2b).

In order to illustrate the effectiveness of the method,
numerical calculations have been performed for a few
reentrant cavities investigated earlier by Uenakada [4] and
Williamson [9].
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TABLEI
SEQUENCE OF SUCCESSIVE APPROXIMATIONS FOR THE RESONANT
FREQUENCY
h=22.792 mm, g="7.958 mm, a =6.004 mm, AND b=42.29 mm

n f(n), GHz

o

2,09649
2.11819

Y

2,12257
2.12427
2.12514
2.12566
2.12600
2.12624
2.12641
2,12654

Q 0O 0O N UM W N

-

2,12665

First, let us consider resonator 1, whose dimensions are
typical for narrow-gap reentrant cavities. Successive ap-
proximations obtained from (12) by extending the matrix
[ W] dimension are listed in Table 1.

Note that the experimental result of Uenakada [4] is
f»=2.135 GHz, while the theory of Williamson [9] yields
$»,=2.1244 GHz. 1t is evident that after a few steps our
iterative procedure provides better approximation than
Williamson’s method: the most accurate among those
published so far. Moreover, it turns out that for a
sufficiently large matrix dimension successive solutions
f® are approximately linearly dependent on 1/n

f=f™ec1/n, (18)
Such a dependence is demonstrated in Fig. 2, where
numerical results from Table I have been plotted against
1/n.

It may easily be checked that for n> 5 the deviation
from the linear dependence does not exceed =0.0001
GHz. Thus on extrapolating the plot to the vertical axis
(n—o0) we obtain the resonant frequency f=2.1276
GHz, which is expected to correspond to the exact solu-
tion with uncertainty +0.0001 GHz. In other words,
owing to the extrapolation procedure, it is possible to
reach an accuracy of about 5X 1075, being at least two
orders of magnitude better than that attainable by the
methods previously published.

Table II presents comparison of experimental data and
numerical results obtained by various methods for seven
reentrant cavities investigated by Uenakada [4].

Note that the only approximation involved in f* is
due to the extrapolation procedure for the sequence of
successive solutions f®. Therefore, f(* is expected to be
very accurate; consequently, it seems justifiable to take
f) as a reference value for comparison with other results.
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Fig. 2. Extrapolation procedure for the sequence of successive
approximations.

We can see that both f, and fU9 are always smaller
than f©. This feature is in agreement with variational
formulation [12], which implies that any approximation of
the aperature field E, (a,z) provides underestimation of
unknown resonant frequency. Error of f, with respect to
f© ranging from 0.15 to 1.2 percent depends strongly on
the relation between cavity dimensions, and reflects to
some extent the validity of Williamson’s approximation.
On the contrary, the accuracy of our results is expected to
be independent of the cavity geometry. Thus the method
presented here, though very useful for narrow-gap cavi-
ties, appears most advantageous when Williamson’s for-
mulation becomes inaccurate, e.g., for wider gaps (cavities
5 and 7) or in those cases when the outer cavity wall may
influence the aperture field distribution (cavities 2 and 6).

As far as experimental results are concerned, the error
of Uenakada’s measurements can be estimated to fall
within +0.4 percent, except for cavity 6 for which £, is
accurate to about 0.8 percent.

IV. CONCLUSIONS

The most relevant features of the method outlined in
this paper are summarized below.

1) Contrary to various methods published previously,
the method suggested here is valid for arbitrary relations
between cavity dimensions.

2) Knowledge of the field distribution on the interface
r=a is not required. Conversely, the tangential compo-
nent of the electric field on the interface may be de-
termined by solving the set (11) for ¢; and then substitut-
ing to (10).

3) The method is rigorous, i.e., the sequence of succes-
sive approximations approaches the exact solution when n
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TABLE II
COMPARISON OF EXPERIMENTAL DATA AND THEORETICAL RESULTS
NOTE: f,, = EXPERIMENTAL RESULT OF UENAKADA [4],
Jf,»=THEORETICAL RESULT OF WILLIAMSON [9], f(!® = SUGGESTED
METHOD FOR 1= 10, AND f(**}= EXTRAPOLATION FOR —>00.

Cavity e a b £ £, £ (10) £(oo)
mm mm mm mm GHz GHz GHz GHz
1 22,792  7.958 6,004 42,29 2,135 2.1244 2,1267 2.1276
2 34,826 8,028 5.992  13.80 2,326 2.3086 2.3297 2.3310
3 31.806  7.984 5.9935 20,99 2,280 2.2678 2.2782 2,2796
4 28,019  7.999 5.999 29,988 2,2264 2,2164 2,2228 2,2241
5 31.806 7.980 3,495 20,99 2.39% 2.3749 2.3952 2.3970
6 33.806 10,000 8,405 20,99 2,3027 2,2689 2.28L4 2,2859
7 33.806 10.000 4,206 20,99 2,4018 2,3789 2,4082 2.4104

tends toward infinity. The only approximation which is
made in practice consists in truncating the sum (10) and
the set (11) at the nth term. In other words, required
accuracy can always be achieved if a sufficiently large
matrix [ W] is taken into consideration.

4) The sequence of successive approximations resulting
from successive expansion of matrix dimensions is nonde-
creasing. Thus for any finite n, an approximate solution
underestimates real resonant frequency.

5) The method is very effective; the 10X 10 matrix
provides much better approximation than any method
published so far. Moreover, the sequence of successive
approximations, when plotted against 1/, can be easily
extrapolated. Such a procedure results in an estimation
with the error of about 5x107° for typical reentrant
cavities.

6) Not only a fundamental mode but also any higher
TM mode of axial symmetry may be found by choosing
an appropriate solution of (12).

7) Numerical problems are slightly more complex than
those arising from Williamson’s approach. Fortunately,
reasonable accuracy may be obtained for low-order
matrices (1< 10), so numerical procedure is not very time
consuming,.

Finally, it should be,noted that applicability of the
method presented here is not confined to reentrant cylin-
drical cavities only. The general idea appears suitable for

any resonant system which can be divided into sufficiently
regular subregions.
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