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metal backed) are not significantly affected when the slab

thichess is a very small fraction of the radius of curva-

ture. However, the presence of a grounded layer of dielec-

tric cm the inner side of the slab leads to a resonant

efiancement in the fractional change in the propagation

ccmstant. k the region where magnetostatic approxima-

tion is approximately valid, the “curvature loss” is ex-

pected to be negligible.
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On the Resonant Frequency of a Reentrant
Cylindrical Cavity

MAREK JAWORSKI

Abstmct—A new efficient n&fIod determfnin g the resonant frequency
of a rwn&mt cy&Md cavity is suggeRted. The method is based on

mifiw ‘t& HeMolti equation within two cavity regions and matching the

Wlwtiom across & boundary surface. Contrary to sbniiar formulations
pnbkhd pmtiomly, the eontimdty conditions on the bmmdary are irn-

-d k a tigorom way. As a resui$ the solution is obtained in a form of
su-ive approtitiom converging to the exact resonant frequency
when a nmkr of iterations tend toward fofiity. Numerfcaf examplea are
given for a few rmatit cavities of typicaf dimensions. Comparfsnn fs also
@e with e_&enti data as weff as other theoretfcaf results.

1. MTRODUcTION

REENTMNTcylindrical cavities, widely used for a

number of years, have recently found a new applica-

tion in solid-state devices, particularly Gurm and tunnel

diode oscillators. Simultaneously, a renewed interest in

approximate methods determining the resonant frequency

of such cavities has been observed. In some applications it

is sufficient to consider a simple equivalent circuit, usually

based on TEM coaxial line and lumped capacitance

[1]-[5]. In general, however, more sophisticated methods
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are needed in order to evaluate the resonant frequency

with reasonable accuracy [6]–[9].

Recently, a new interesting approach has been sug-

gested by Williamson [9]. In his method, the magnetic

field in both regions of the reentrant cavity is excited by

the “aperture” electric field given on the interface r = a

(see Fig. 1). The resonant frequency is then found by

matching the magnetic fields across the interface arid

solving the appropriate transcendental equation.

The above formulation, being in fact an improvement

of Hansen’s approach [6], is numerically simple and pro-

vides more accurate results than the solutions published

previously. Nevertheless, the main disadvantage of both

Williamson’s and Hansen’s method is due to the fact that

the aperture field, which is generally not known, has to be

included in the transcendental equation. In the paper of

Williamson [9], the solution of the corresponding cylindri-

cal antenna problem has been suggested as a suitable

approximation for the electric field on the interface r = a.

Unfortunately, such an approximation is sufficiently ac-

curate for narrow-gap cavities only. Moreover, the solu-

tion of the antenna problem, as formulated for an un-

bounded region, may not be adequate for resonant sys-

tems, particularly in the cases when the outer diameter of
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Fig. 1. Cross section of the reentrant cavity.
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the cavity 2b is not much larger than the inner diameter

2a. On the other hand, imposing the continuity condition

for one point only [6] or for the average value of the field

[9] is evidently insufficient, since the field has to be
continuous in each point on the boundary surface.

In order to avoid the foregoing disadvantages, we have

developed a method which is more general and simulta-

neously more rigorous than various formulations pub-

lished until now. Since no approximation of the aperture

field is required, the method outlined below is very ac-

curate and may be applied to reentrant cavities of arbi-

trary dimensions. A simple numerical procedure provides

a sequence of successive approximations approaching the

exact solution as a limit.

II. FORMULATION OF THE ~ROBLENi

The cross section of the cylindrical reentrant cavity is

shown in Fig. 1. It is convenient to divide the cavity into

two regular regions along the surface r= a. It may then be

assumed that the magnetic field in each region is excited

by surface magnetic currents equivalent to the electric

field incident on the boundary surface (aperture) r= a

[10]. since we are mainly interested in axially symmetric

fundamental modes, we confine our considerations to the

solutions which are independent of the angular coordin-

ate rf.

In particular, for the magnetic field on the aperture, we

obtain

H: (a,z) = g J(
z~

‘Gr a,a,z,z’)Ez (a,z’)dz’, a<r<b

(la)

and

– ik
J(H$(a,z)== ~‘GII a,a,z,z’)Ez (a,z’)dz’, O< r < a

(lb)
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where

G (r, r’, z, z’) two-dimensional Cheen function of the

Helmholtz operator in cylindrical coordi-

nate system,

E, (a, z’) component of the electric field tangtmtial

to the surface r= a,

k=2~/A free-space propagation constant,

z free-space impedance.

It can be shown that

1 [G;+2 i cos(mmz/h)G1(a, a,z, z’)= – ~
,’

L /)s=1

.cos(mnz’/h)G~ 1(2ia)

J1(va) YO(ob) – Y1(va)JO(ob)
k>wm/h

o[JO(oa) YO(vb) – YO(oa)JO(ob) ] ‘

11(oa)KO(ob) + K1 (oa)IO(ob)
k<?nw/h

0[ logo – Ko(oa)IO(vb) ] ‘

v=~k’-o+)’l ~ m=o~,zo-~
J.(x) and Y.(x) denote the Bessel functions of the fi~~t

and second kind, respectively, while 1.(x) and K.(x) de-

note the modified Bessel function of the first and second

kind, respectively.

Similarly

[

G1l (a, a,z,z’) = ~ G&+2 ~ cos(nnz/g)
~=1

. cos(nrz’/g) G;l 1(2!3)
where

[

J, (us)

Z4J0(us) ‘G:l =

11 (us)

UIO(us) ‘

Since the Green function is in fact the kernel

resolvent operator R, it is convenient to introduce

operator notation

of the

a brief

RX(a,z) = ~ ~gG (a, a,z, z’)~(a,z’)dz’ (3)

where X(a, z) is the arbitrary function defined for z = (0, g).

Thus one can rewrite (1(a)) and (1(b)) in a simple form

H; (a,z) = R lEZ (a,z)

and

H1l (a, z)= –l?11J!3z(a, z).
v

The resonance condition follows directly
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tinuity condition for the magnetic field on the boundary

H: (a,z) – H: (a,z) =0 (5)

or in a more compact form

F(z)=O (6)

where

F(z) = H; (a,z) – H; (a,z)

= R %= (a,z) + RIIEZ (~, Z). (7)

Proper approach to the solution of (6) is the crucial

point of the method, since any approximation made at
this moment strongly influences the final results. The

main difficulty arises from the fact that (6), from which

the resonant frequency is to be determined, must be

satisfied for every z belonging to the interval (O,g).

Williamson [9] suggests an “averaged” continuity condi-

tion of the type

/ ()‘F Z dz=O
o

which is independent of z and, contrary to previous for-

mulations [6], involves the continuity condition for each

point from (O,g). It should be stressed, however, that such
an averaged equation is not equivalent to (6), since satisfy-

ing /#F(z) dz = O does not imply that F(z) equals zero for
every z belonging to the interval (O,g). Instead, it can

easily be shown that (6) is equivalent to an infinite set of

equations

~gF(z)~(z)dz=O, j=0,1,2,. . (8)

where the functions ~, form a complete orthonormal set in

the interval (O,g). Indeed, F(z) will vanish if all its Fourier

coefficients (given in fact by (8)) vanish simultaneously.

Thus substituting (7) into (8), we find that the reso-

nance condition (5) is equivalent to the infinite set

(R’Ez,~)+(Rr%z, ~)=O, j=o, 1,2,... (9)

where (u, o) denotes a scalar product J@ (Z)V (z) dz.

It should be noted that, contrary to other methods, we

do not require any information about the electric field

distributions on the boundary surface r= a. We assume

that only E= (a, z) is at least a piecewise continuous func-

tion of z and may be expanded in a series

E= (~,Z) = ~ Ci~i(Z). (lo)
i=o

On substituting (10) into (9) we obtain an infinite set of

homogeneous linear equations

f ci[(R~i,4j)+(R1~z,4j) ]=o, j=0,1,2,... . (11)
izo

A nonzero solution for c, exists only if the determinant

formed from the expressions in square brackets vanishes.

Hence, the final transcendental equation may be written

as

det~~l=O (12)

where elements of the matrix [~] are given by

WV= 7,= (R~i,@ + (R’fbi,~), i,J”=o, l,2,. . . . (13)

Since the set {$,} is infinite, the exact solution of (12) with

respect to the resonant frequency could be found for an

infinite dimensional matrix only. In practice, however,

(12) may be solved approximately to any desired order by

truncating both the set of equations (9) and the series (10)

at i,j = n. Thus extending successively the matrix dimen-

sion we obtain a sequence of approximations tending to

the exact solution when n tends toward infinity.

It is interesting that the set of linear equations identical

with (11) may be derived from Weinstein’s variational

method of intermediate problems [11], [12]. General varia-

tional formulation implies that the sequence of successive

approximations is nondecreasing

j(o)< f(l)< . ..< f(n)< f.. <f (14)

where ~ is the exact resonant frequency, and ~(”) is the

approximate solution of (12) for i,j < n. In other words,

approximate solutions f(”) form a monotonic sequence

converging to the exact solution from below.

Note that the number of roots of (12) is infinite. The

lowest one corresponds to the fundamental mode, whereas

the others correspond to higher TM modes of axial sym-

metry.

111. NUMERICAL RESULTS

Let us take into consideration the following set:

{

l/~ ,
+,(Z)=

i=o

~ cos(i~z/g), i= 1,2,3,...
(15)

which is complete and orthonormal in the interval (O,g).

After substituting (15) into (13) we obtain diagonal ele-

ments

i=l,2,3, . . . (16)

off-diagonal elementsand

} ~:l[sin$:~h)r

w1j=23’2 x(-l)m+”+l g m
4

i= o

[1-(ih/rng)2~l- (jh/mg)2] ‘
(17)

i=l,2,3,...

where G; and G~l are defined in (2a) and (2b).
In order to illustrate the effectiveness of the method,

numerical calculations have been performed for a few

reentrant cavities investigated earlier by Uenakada [4] and

Williamson [9].
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TABLE I
SEQUENCE OF SUCCESSIVE AFPROXJMATTONS FOR THE RESONANT

FREQUENCY

h = 22.792 mm, g=7.958 mm, a= 6.004 mm, AND b =42.29 mm

n f(n), GHZ

o 2.09649

1 2.11819

2 2,12257

3 2.12427

4 2.12514

5 2.12566

6 2.12600

7 2.12624

8 2.12641

9 2.12654

10 2.12665

First, let us consider resonator 1, whose dimensions are

typical for narrow-gap reentrant cavities. Successive ap-

proximations obtained from (12) by extending the matrix

[W] dimension are listed in Table I.

Note that the experimental result of Uenakada [4] is

~n = 2,135 GHz, while the theory of Williamson [9] yields

l,= 2.1244 GHz. It is evident that after a few steps our
iterative procedure provides better approximation than

Williamson’s method: the most accurate among those

published so far. Moreover, it turns out that for a

sufficiently large matrix dimension successive solutions

j(n) are approximately linearly dependent on 1/n

j–f(nJal/n, (18)

Such a dependence is demonstrated in Fig. 2, where

numerical results from Table I have been plotted against

I/n.

It may easily be checked that for n >5 the deviation

from the linear dependence does not exceed f 0.0001

GHz. Thus on extrapolating the plot to the vertical axis

(n-+ co) we obtain the resonant frequency j(~)= 2.1276

GHz, which is expected to correspond to the exact solu-

tion with uncertainty 5:0,0001 GHz. In other words,

owing to the extrapolation procedure, it is possible to

reach an accuracy of about 5 x 10– 5, being at least two

orders of magnitude better than that attainable by the

methods previously published,

Table II presents comparison of experimental data and

numerical results obtained by various methods for seven
reentrant cavities investigated by Uenakada [4].

Note that the only approximation involved in f(m) is

due to the extrapolation procedure for the sequence of

successive solutions j@). Therefore, j(~) is expected to be

very accurate; consequently, it seems justifiable to take

j(m) as a reference value for comparison with other results.

2.128

2127

2

6

2,126

2125

:
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I I I I I I I

;259

I

::

1/10 1/8 1/6 1/4

I/n

Fig. 2. Extrapolation procedure for the sequence of successive
approximations.

We can see that both ~W and jflO) are always smaller

than j(w). This feature is in agreement with variational

formulation [12], which implies that any approximation of

the aperature field E= (a, z) provides underestimation of

unknown resonant frequency. Error of ~W with respect to

.f(~) ranging from 0.15 to 1.2 percent depends strongly on
the relation between cavity dimensions, and reflects to

some extent the validity of Williamson’s approximation.

On the contrary, the ac&racy of our results is expected to

be independent of the cavity geometry. Thus the method

presented here, though very useful for narrow-gap cavi-

ties, appears most advantageous when Williamson’s for-

mulation becomes inaccurate, e.g., for wider gaps (cavities

5 and 7) or in those cases when the outer cavity wall may

influence the aperture field distribution (cavities 2 and 6),

As far as experimental results are concerned, the error

of Uenakada’s measurements can be estimated to fall

within &0.4 percent, except for cavity 6 for which f~ is

accurate to about 0.8 percent.

IV, CONCLUSIONS

The most relevant features of the method outlined in
this paper are summarized below,

1) Contrary to various methods published previously,

the method suggested here is valid for arbitrary relations

between cavity dimensions.

2) Knowledge of the field distribution on the interfawe
r = a is not required. conversely, the tangential COmpO-

nent of the electric field on the interface may be &-

termined by solving the set (11) for Ci and then substitut-

ing to (10).

3) The method is rigorous, i.e., the sequence of succes-

sive approximations approaches the exact solution when n
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TABLE II
COMPARISONOFEXFmUMSNTALDATAANDTHEORETICALRSSULTS

NoTs: j.. EXmmrMENTAL hSULT OF UENAXADA [4],

~~ ‘THEORETICAL R8SULT OF WILLIAMSON 19],j(’0) = SUOOESTED
MIWHOD FOR n = 10, ANOj(m) = EXTRAFOLATTON FOR rr+a.

Cavity
no.

h g a b f fw * (10) * (an)

mm mm mm mm G;z GHz GHz GHz

1 22.792 7.958 6.004 42.29 2.135 2.1244 2.1267 2.1276

2 34.826 8.028 5.992 13.80 2.326 2.3086 2.3297 2.3310

3 31.806 7.984 5.9935 20.99 2.280 2.2678 2.2782 2.2796

4 28.019 7.999 5.999 29.988 2.2264 2.2164 2.2228 2.2241

5 31 .8cY5 7.980 3.495 20.99 2.394 2.3749 2.3952 2.3970

6 33.8C6 10.000 8.405 20.99 2.3027 2.2689 2.2844 2.2859

7 33.806 10.000 4.2D5 20.99 2.4018 2.3789 2.4082 2.4104

tends toward infinity. The only approximation which is any resonant system which can be divided into sufficiently

made in practice consists in truncating the sum (10) and regular subregions.

the set (11) at the nth term. In oth& words, required

accuracy can always be achieved if a sufficiently large

matrix [W] is taken into consideration. [1]
4) The sequence of successive approximations resulting

from successive expansion of matrix dimensions is nonde- 121

creasing. Thus for any finite n, an approximate solution

underestimates real resonant frequency, [3]

5) The method is very effective; the 10x 10 matrix

provides much better approximation than any method 141

published so far. Moreover, the sequence of successive

approximations, when plotted against 1/n, can be easily

extrapolated. Such a procedure results in an estimation
[5]

with the error of about 5 x 10 – 5 for typical reentrant

cavities. [6]

6) Not only a fundamental mode but also any higher [71

TM mode of axial symmetry may be found by choosing

an appropriate solution of (12). [8]

7) Numerical problems are slightly more complex than

those arising from Williamson’s approach. Fortunately, [91

reasonable accuracy may be obtained for low-order

matrices (n< 10), so numerical procedure is not very time I ICI]

consuming,
[11]

Finally, it should be ~noted that applicability of the

method presented here is not confined to reentrant cylin- 1121

drical cavities only. The general idea appears suitable for
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